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SUMMARY
This paper uses a novel approach to constructing an effective preconditioner for finite-difference (FD)
electromagnetic modeling in applications to mineral exploration. This approach uses a FD contraction
operator, similar to one developed for integral equation modeling. We demonstrate the effectiveness of this
new modeling method and corresponding code in the sensitivity study of magnetotelluric data to an ore
deposit, typical for Norilsk ore region.
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Introduction 
 
The choice of an efficient method of 3D numerical modeling is crucial for inversion of 
electromagnetic data. The most time-consuming step in finite-difference (FD) modeling is the solution 
of the corresponding system of linear equations. Both iterative and direct solvers have been used for 
EM modeling; however, direct solvers still impose challenging memory requirements for large-scale 
3D problems, which make the iterative solvers more attractive. For the finite-difference discretization 
on nonuniform computational grids, we recently developed and analyzed a novel approach to 
constructing a preconditioned iterative solution of those systems. This approach relies on the energy 
equality, which states that all the energy emitted by the excess electric current inside the domain with 
the anomalous conductivity is converted into Joule heating within the computational domain.  
 
We have applied this approach to the sensitivity study of magnetotelluric (MT) data with respect to an 
ore deposit. The tested resistivity model is based on a typical deposit of Norilsk ore region, which was 
studied recently by a detailed magnetotelluric survey supported by drilling. 
 
Numerical Modeling Method 
 
We consider a geoelectrical model with the spatial conductivity distribution, , represented as 
a superposition of layered background conductivity, , and anomalous conductivity, , 
i.e.  Given a particular source, a similar decomposition could be 
performed for electric fields as well,  

 
where , , and  are the total, background, and anomalous electric field 
respectively (Zhdanov, 2009). Since  can be found quasi-analytically, the solution of the 
forward modeling problem can be reduced to solving for . The well-known advantage of 
this aproach is that we can use the known solutions for the background field and solve the differential 
equations for the anomalous field only avoiding modelling a singularity in the source. 
 
Following the conventional edge-based finite-difference discretization (Yee, 1966; Weiss and 
Newman, 2002), we introduce the discrete conductivities for the total, background and anomalous 
models, , as well as the respective discrete electric fields, . The linear system 
of algebraic equations corresponding to the differential equations for  has the following form:  

                                                                    (1) 
where  is a square system matrix,  is the source angular frequency,  is the magnetic permeability 
of the free space. 
 
Let  be the FD system matrix, corresponding to the background conductivity model, . 
Interestingly, this matrix can be implicitly factorized and the action of the inverse matrix can be 
efficiently computed. As a result, it can be used as a preconditioner to (1):  

                                                       (2) 
The performance of this preconditioner depends on how close the total model is to the background 
model. We write the respective estimate as the following double inequality:  

 
This inequality ensures that the anomalous domains are neither perfect conductors nor insulators. It 
can be shown that the condition number of the matrix arising in (2) is essentially dictated by the 
following quotient, 

                                                                     (3) 

This preconditioner will be referred to as the Green’s function preconditioner (or FD 1D), since  
corresponds to the Green’s function for the layered background model. 
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In order to minimize the dependence of the solver’s complexity from the conductivity contrast, 
Pankratov et al. (1995), Singer (1995), suggested a transformation, which has the properties of  a 
contraction integral equation operator (Zhdanov and Fang, 1997; Hursan and Zhdanov, 2002). For the 
FD formulation, it can be introduced as following. We define the modified FD Green’s operator 
according to the following formula: 

  (4) 
Using this operator, equation (1) can be written in an equivalent form as follows: 

  (5) 
where ,  are diagonal matrices, 

  (6) 
By introducing a new operator,  

  (7) 
we rewrite system (5) as follows: 

                                                       (8) 
Finally, we arrive at the following preconditioned system of equations for the scaled anomalous 
electric field, :  

   (9) 

An important feature of the above equation is that operator  is a contraction operator for media of 
any contrast. A simple estimate for the condition number of  can be derived for high-contrast 
geoelectrical models, i.e.  and : 

    (10) 
We will refer to this preconditioner as a contraction operator (CO) preconditioner. We can conclude 
from estimates (3) and (10) that, when both conductive and resistive anomalies are present in the 
geoelectrical model ( , ), the solver based on the CO preconditioner will converge faster 
than the one based on the FD 1D preconditioner. 

Sensitivity study of the MT responses 

Figure 1 presents a resistivity model used in our sensitivity study. It is a schematized and horizontally 
scaled version of a detailed resistivity model of the ore-bearing intrusion of Norilsk ore region, 
constructed using the recently obtained MT data. The sedimentary background includes a near-surface 
layer and sedimentary host rocks. The resistive granite intrusion includes two conductive ore bodies, 
formed due to gravitational differentiation during magma cooling. We have estimated sensitivity of 
MT data to the presence of the ore bodies in the bottom of the intrusion.  

This model features a dramatic resistivity contrast of hundred thousand times making modeling a 
challenging procedure since this contrast contributes to the condition number of the system matrix, 

of the FD equations. For this model, iterative solution of equation (1) requires a robust 
preconditioner. We studied the performance of the two preconditioners introduced in the previous 
section.  

We generated a 154 108 55 nonuniform computational grid with the smallest cell size of 15 15 15 
 for plane-wave excitation at a period of 10 s. Table 1 shows iteration count, , and CPU time, , 

in seconds of the BiCGStab (Saad, 2003) iterative solver needed to reach a residual relative norm of 
1e-8, leveraged with the two preconditioners. Iteration count and CPU time are presented for both - 
and -polarisations. 
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Figure 1 Resistivity model of the ore-bearing intrusion projected onto x0z, y0z and x0y planes. 

We observed that the use of the CO preconditioner gave us a speedup of almost four times. This result 
is consistent with the analysis presented in the previous section. The model involves both resistive and 
conductive inclusions; therefore convergence of the iterative solver with the CO preconditioner was 
expected to be faster. 

Finally, we present the pseudo-section plots of apparent resistivities,  and , and impedance 
phases,  and , along three profiles,      m (Figure 2). The data was computed at 
21 periods, from 0.01 to 1000 s, four periods per decade. The separate grids were used for every 
period to make the smallest cell size at most half of the ore bodies’ skin depth. 

Table 1 Iteration count, , and CPU time, , in seconds of the BiCGStab iterative solver. 
-polarisation -polarisation 

FD 1D CO FD 1D CO 
 922 230 871 220 

, s 4306 1097 4067 1056 

Figure 2 indicates a pronounced impact of the larger ore body on the responses. On the other hand, a 
delineation of the smaller body may require high-quality data and/or inversion. The larger body has 
six times larger volume, it is also 50 % thicker, than the smaller one; therefore its better sensitivity 
should be expected. 

Conclusions 

In this paper, we have studied performance of the two preconditioners applied to the finite-difference 
system of equations used in 3D MT modeling. We have demonstrated both analytically and 
numerically that the iterative solver preconditioned with the contraction operator converges faster 
than the one with Green’s function preconditioner on some models. Specifically, a speedup was 
proved to take place for high-contrast models involving both resistive and conductive inclusions. We 



Near Surface Geoscience 
4-8 September 2016, Barcelona, Spain

illustrated our discussion with sensitivity study of the MT data to ore bodies included into a granite 
intrusion. 

Figure 2 Apparent resistivities(common logarithm) and impedance phases along three profiles. 
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